
JIM MANICO Secure Coding Instructor www.manicode.com

Authentication and Session Management

COPYRIGHT ©2015 MANICODE SECURITY

A little background dirt…
jim@manico.net

 @manicode

§  OWASP Global Board Member
§  Project manager of the

OWASP Cheat Sheet Series and
several other OWASP projects

§  18+ years of software
development experience

§  Author of "Iron-Clad Java,
Building Secure Web Applications”
from McGraw-Hill/Oracle-Press

§  Kauai, Hawaii Resident

2

COPYRIGHT ©2015 MANICODE SECURITY 3

WARNING: Please do not attempt to hack any
computer system without legal permission to do so.
Unauthorized computer hacking is illegal and can
be punishable by a range of penalties including
loss of job, monetary fines and possible imprisonment.

ALSO: The Free and Open Source Software presented in these materials are
examples of good secure development tools and techniques. You may have
unknown legal, licensing or technical issues when making use of Free and Open
Source Software. You should consult your company's policy on the use of Free
and Open Source Software before making use of any software referenced in this
material.

COPYRIGHT ©2015 MANICODE SECURITY

Authentication: Where are we going?

4

Session Management

Transport Security

Password Storage

Multi-Factor Authentication

Forgot Password Workflow

COPYRIGHT ©2015 MANICODE SECURITY 5

Question:
What is authentication?
Answer: Verification that an entity is who it claims to be

COPYRIGHT ©2015 MANICODE SECURITY 6

Question:
What is the difference between
authentication and authorization?
Answer: Authentication verifies the identity of a user.
Authorization checks if an entity has privileges to perform a
function or action.

COPYRIGHT ©2015 MANICODE SECURITY 7

Question:
What is an authentication session?
Answer: A session is an area of memory or storage that
tracks certain aspects of a users. An authenticated session
tracks the status of a user who is "logged in" to your
system. A session identifier (ID) is supplied to the entity
once they are authenticated.

COPYRIGHT ©2015 MANICODE SECURITY

Sessions and Session IDs

8

§ A session is created by an application server to track
the state of authenticated users and visitors

§ A session includes a area of memory or storage on the
server and a session ID to refer to that server side session

§ A session ID is a random, unique, and difficult to guess string
ASEIUHF849J283JE874GSJWOD2374DDEOFEFK93423H

§ Sessions and therefor session ID's are valid for a finite period of time
§ Sessions are used by the application server on any subsequent request

to verify the identity of the sender

Session IDs are a "key" to a portion of memory on the server where
data and state can be stored for the corresponding active user!

COPYRIGHT ©2015 MANICODE SECURITY

More on Sessions
§  In some applications, the session is initiated

once a user identifies/authenticates themself.
§  In other applications, the session is initiated even for anonymous users

on first page visit.
§ Session ID's are typically passed between the browser and server in

an HTTP Cookie.
§  The session ID is often all that is needed to prove authentication

for the rest of the session.
§ Session management is usually handled by the web framework,

making it transparent to the developer.

The session ID is often all that is needed to prove authentication
for the rest of the session! We need to protect it!

9

COPYRIGHT ©2015 MANICODE SECURITY

Session Management Workflow

10

Do cool things

4
Create session,
deliver cookie
to user

Start HTTPS,
and deliver
login form

Submit
credentials

1 2 3

Invalidate
session

8
Absolute session
timeout

Potential
re-authentication

Logoff or
idle session
timeout

5 6 7

COPYRIGHT ©2015 MANICODE SECURITY

How do we
manage cookies
properly?

11

COPYRIGHT ©2015 MANICODE SECURITY

Cookie Options and Security

12

Set-Cookie: NAME=VALUE; expires=EXPIRES;
 path=PATH; domain=DOMAIN;
 secure; httponly;

Name The name of the cookie parameter

Value The parameter value

Expires The date at which to discard the cookie. If absent, the cookie will not be
persistent, and will be discarded when the browser is closed. If "-1", the cookie
will be discarded immediately.

Domain The domain that the cookie applies to

Path The path that the cookie applies to

Secure Indicates that the cookie can only be used over secure HTTPS. USE THIS!

HttpOnly Indicates that the cookie can only be modified and accessed from the server. For
example, JavaScript within the browser application will not be able to access the
cookie. USE THIS FOR SESSION IDs!

COPYRIGHT ©2015 MANICODE SECURITY

Additional Cookie Security Defenses
§ Avoid storing sensitive data in cookies
§ Avoid using persistent cookies
§ Any sensitive cookie data should be encrypted if not intended to be

viewed/tampered by the user. Persistent cookie data not intended to be
viewed by others should always be encrypted.

§ Cookie values susceptible to tampering should be protected with an
HMAC appended to the cookie, or a server-side hash in a session
variable of the cookie contents.

13

COPYRIGHT ©2015 MANICODE SECURITY

So… what are some
of the main attacks
against authentication
and session
management
mechanisms?

14

COPYRIGHT ©2015 MANICODE SECURITY

Authentication Dangers

15

Poor Password
Management

Weak “Forgot
Password” Feature

Username
Harvesting

§  Stolen database revealing
stored password data

§  Brute force attack attempting
many password guesses for a
specific account

§  Brute force attack attempting
one password guess against
many accounts: password123

§  Simple password policy
allowing faster guesses or
unlimited guesses

§  Password reuse: Attacks on
one website effect others

§  Registration page
often makes this
easy

§  Leaked usernames
and email addresses
via timing attack

§  Plaintext password
sent over email

§  Reset links
sent over email

§  Original passwords
sent over email

COPYRIGHT ©2015 MANICODE SECURITY

More Authentication Dangers

16

“Change Password” Feature Session Management Dangers

§  Does not require existing password
§  Allows for resetting of other users

password

§  Does not enforce good password
policy

§  Forcing victims to use known
session IDs (fixation)

§  Weak or predictable session IDs

§  Session Hijacking via XSS
(HTTPOnly)

§  Session Hijacking via network sniffing
(secure cookie flag)

§  Lack of session timeout; sessions
that never expire

COPYRIGHT ©2015 MANICODE SECURITY

How do we
deal with brute
force attacks?

17

COPYRIGHT ©2015 MANICODE SECURITY

Brute Force Defense

18

Vertical Horizontal

§  Track TOTAL failed logins over time

§  Detect when failed logins spike

§  Rate limiting

§  Multi-Factor authentication

§  Account locking

§  Obscure usernames

§  Rate limiting

§  Strong password policy

COPYRIGHT ©2015 MANICODE SECURITY

How do we protect
usernames from
being harvested?

19

COPYRIGHT ©2015 MANICODE SECURITY

Username Harvesting Attack Defense
§ Send all usernames over well configured HTTPS/SSL/TLS.
§ Develop generic failed login messages that do not indicate

whether the user-id or password was incorrect, and implement
timing-attack prevention.

§ Ensure that good usernames and bad usernames take the
same time to process for all login attempts.
–  Prevent Timing Attack

§ Do not worry about this risk if your allow username verification
via registration, forgot password or similar features.

§ Consider making usernames obscure and assigned, instead of
chosen by users.

20

COPYRIGHT ©2015 MANICODE SECURITY

When should we
make our users
re-authenticate?

21

COPYRIGHT ©2015 MANICODE SECURITY

Credential Security
§ Credential security is used for authentication and re-authentication.

It helps minimize CSRF and session hijacking attacks.
§ Some of the actions that should require a user to provide their identity:
–  Login
–  Change Password
–  Change Email Address
–  Delete Account
–  Financial Transaction
–  Attestion

§  Implement server-side enforcement of password syntax and strength
–  No common passwords
–  Minimum length
–  Numbers/Symbols
–  Uppercase/Lowercase

Find a balance. An overly strong policy is bad.

22

COPYRIGHT ©2015 MANICODE SECURITY

Password1!

23

COPYRIGHT ©2015 MANICODE SECURITY

Twitter Password Ban-List: August 2014

24

8675309
987654
nnnnnn
nop123
nop123
nopqrs
noteglh
npprff
npprff14
npgvba
nyoreg
nyoregb
nyrkvf
nyrwnaqen
nyrwnaqeb
nznaqn
nzngrhe
nzrevpn
naqern
naqerj
natryn
natryf
navzny
nagubal
ncbyyb
nccyrf
nefrany
neguhe
nfqstu
nfqstu
nfuyrl
nffubyr
nhthfg
nhfgva
onqobl
onvyrl
onanan
onearl
onfronyy
ongzna
orngevm
ornire
ornivf
ovtpbpx
ovtqnqql
ovtqvpx
ovtqbt
ovtgvgf
oveqvr
ovgpurf
ovgrzr
oynmre
oybaqr
oybaqrf
oybjwbo
oybjzr
obaq007
obavgn
obaavr
obbobb
obbtre
obbzre
obfgba
oenaqba
oenaql
oenirf
oenmvy
oebapb
oebapbf
ohyyqbt
ohfgre
ohggre
ohggurnq
pnyiva
pnzneb
pnzreba
pnanqn
pncgnva
pneybf
pnegre
pnfcre
puneyrf
puneyvr
purrfr
puryfrn
purfgre
puvpntb
puvpxra
pbpnpbyn
pbssrr
pbyyrtr
pbzcnd
pbzchgre
pbafhzre
pbbxvr
pbbcre
pbeirggr
pbjobl
pbjoblf
pelfgny
phzzvat
phzfubg
qnxbgn
qnyynf
qnavry
qnavryyr
qroovr
qraavf
qvnoyb
qvnzbaq
qbpgbe
qbttvr
qbycuva
qbycuvaf
qbanyq
qentba
qernzf
qevire
rntyr1
rntyrf
rqjneq
rvafgrva
rebgvp
rfgeryyn
rkgerzr
snypba
sraqre
sreenev
sveroveq
svfuvat
sybevqn
sybjre
sylref
sbbgonyy
sberire
serqql
serrqbz
shpxrq
shpxre
shpxvat
shpxzr
shpxlbh
tnaqnys
tngrjnl
tngbef
trzvav
trbetr
tvnagf
tvatre
tvmzbqb
tbyqra
tbysre
tbeqba
tertbel
thvgne
thaare
unzzre
unaanu
uneqpber
uneyrl
urngure
uryczr
uragnv
ubpxrl
ubbgref
ubearl
ubgqbt
uhagre
uhagvat
vprzna
vybirlbh
vagrearg
vjnagh
wnpxvr
wnpxfba
wnthne
wnfzvar
wnfcre
wraavsre
wrerzl
wrffvpn
wbuaal
wbuafba
wbeqna
wbfrcu
wbfuhn
whavbe
whfgva
xvyyre
xavtug
ynqvrf
ynxref
ynhera
yrngure
yrtraq
yrgzrva
yrgzrva
yvggyr
ybaqba
ybiref
znqqbt
znqvfba
znttvr
zntahz
znevar
znevcbfn
zneyobeb
znegva
zneiva
znfgre
zngevk
znggurj
znirevpx
znkjryy
zryvffn
zrzore
zreprqrf
zreyva
zvpunry
zvpuryyr
zvpxrl
zvqavtug
zvyyre
zvfgerff
zbavpn
zbaxrl
zbaxrl
zbafgre
zbetna
zbgure
zbhagnva
zhssva
zhecul
zhfgnat
anxrq
anfpne
anguna
anhtugl
app1701
arjlbex
avpubynf
avpbyr
avccyr
avccyrf
byvire
benatr
cnpxref
cnagure
cnagvrf
cnexre
cnffjbeq
cnffjbeq
cnffjbeq1
cnffjbeq12
cnffjbeq123
cngevpx
crnpurf
crnahg
crccre
cunagbz
cubravk
cynlre
cyrnfr
cbbxvr
cbefpur
cevapr
cevaprff
cevingr
checyr
chffvrf
dnmjfk
djregl
djreglhv
enoovg
enpury
enpvat
envqref
envaobj
enatre
enatref
erorppn
erqfxvaf
erqfbk
erqjvatf
evpuneq
eboreg
eboregb
ebpxrg
ebfrohq
ehaare
ehfu2112
ehffvn
fnznagun
fnzzl
fnzfba
fnaqen
fnghea
fpbbol
fpbbgre
fpbecvb
fpbecvba
fronfgvna
frperg
frkfrk
funqbj
funaaba
funirq
fvreen
fvyire
fxvccl
fynlre
fzbxrl

8675309
987654
nnnnnn
nop123
nop123
nopqrs
noteglh
npprff
npprff14
npgvba
nyoreg
nyoregb
nyrkvf
nyrwnaqen
nyrwnaqeb
nznaqn
nzngrhe
nzrevpn
naqern
naqerj
natryn
natryf
navzny
nagubal
ncbyyb
nccyrf

nefrany
neguhe
nfqstu
nfqstu
nfuyrl
nffubyr
nhthfg
nhfgva
onqobl
onvyrl
onanan
onearl
onfronyy
ongzna
orngevm
ornire
ornivf
ovtpbpx
ovtqnqql
ovtqvpx
ovtqbt
ovtgvgf
oveqvr
ovgpurf
ovgrzr
oynmre

oybaqr
oybaqrf
oybjwbo
oybjzr
obaq007
obavgn
obaavr
obbobb
obbtre
obbzre
obfgba
oenaqba
oenaql
oenirf
oenmvy
oebapb
oebapbf
ohyyqbt
ohfgre
ohggre
ohggurnq
pnyiva
pnzneb
pnzreba
pnanqn
pncgnva

pneybf
pnegre
pnfcre
puneyrf
puneyvr
purrfr
puryfrn
purfgre
puvpntb
puvpxra
pbpnpbyn
pbssrr
pbyyrtr
pbzcnd
pbzchgre
pbafhzre
pbbxvr
pbbcre
pbeirggr
pbjobl
pbjoblf
pelfgny
phzzvat
phzfubg
qnxbgn
qnyynf

qnavry
qnavryyr
qroovr
qraavf
qvnoyb
qvnzbaq
qbpgbe
qbttvr
qbycuva
qbycuvaf
qbanyq
qentba
qernzf
qevire
rntyr1
rntyrf
rqjneq
rvafgrva
rebgvp
rfgeryyn
rkgerzr
snypba
sraqre
sreenev
sveroveq
svfuvat

sybevqn
sybjre
sylref
sbbgonyy
sberire
serqql
serrqbz
shpxrq
shpxre
shpxvat
shpxzr
shpxlbh
tnaqnys
tngrjnl
tngbef
trzvav
trbetr
tvnagf
tvatre
tvmzbqb
tbyqra
tbysre
tbeqba
tertbel
thvgne
thaare

unzzre
unaanu
uneqpber
uneyrl
urngure
uryczr
uragnv
ubpxrl
ubbgref
ubearl
ubgqbt
uhagre
uhagvat
vprzna
vybirlbh
vagrearg
vjnagh
wnpxvr
wnpxfba
wnthne
wnfzvar
wnfcre
wraavsre
wrerzl
wrffvpn
wbuaal

wbuafba
wbeqna
wbfrcu
wbfuhn
whavbe
whfgva
xvyyre
xavtug
ynqvrf
ynxref
ynhera
yrngure
yrtraq
yrgzrva
yrgzrva
yvggyr
ybaqba
ybiref
znqqbt
znqvfba
znttvr
zntahz
znevar
znevcbfn
zneyobeb
znegva

zneiva
znfgre
zngevk
znggurj
znirevpx
znkjryy
zryvffn
zrzore
zreprqrf
zreyva
zvpunry
zvpuryyr
zvpxrl
zvqavtug
zvyyre
zvfgerff
zbavpn
zbaxrl
zbaxrl
zbafgre
zbetna
zbgure
zbhagnva
zhssva
zhecul
zhfgnat

anxrq
anfpne
anguna
anhtugl
app1701
arjlbex
avpubynf
avpbyr
avccyr
avccyrf
byvire
benatr
cnpxref
cnagure
cnagvrf
cnexre
cnffjbeq
cnffjbeq
cnffjbeq1
cnffjbeq12
cnffjbeq123
cngevpx
crnpurf
crnahg
crccre
cunagbz

cubravk
cynlre
cyrnfr
cbbxvr
cbefpur
cevapr
cevaprff
cevingr
checyr
chffvrf
dnmjfk
djregl
djreglhv
enoovg
enpury
enpvat
envqref
envaobj
enatre
enatref
erorppn
erqfxvaf
erqfbk
erqjvatf
evpuneq
eboreg

eboregb
ebpxrg
ebfrohq
ehaare
ehfu2112
ehffvn
fnznagun
fnzzl
fnzfba
fnaqen
fnghea
fpbbol
fpbbgre
fpbecvb
fpbecvba
fronfgvna
frperg
frkfrk
funqbj
funaaba
funirq
fvreen
fvyire
fxvccl
fynlre
fzbxrl

COPYRIGHT ©2015 MANICODE SECURITY

Re-Authentication Examples

25

COPYRIGHT ©2015 MANICODE SECURITY

How do we deal with
Session Fixation

26

COPYRIGHT ©2015 MANICODE SECURITY

Additional Session Defense
§ Generate a new session ID at login to protect against session fixation.
§ Disable URL session rewriting to protect against session fixation
§ Example: Java/Tomcat 7
–  <session-config>
–  <tracking-mode>COOKIE</tracking-mode>
–  </session-config>

§  Implement session timeouts and re-authentication to minimize
session hijacking.

27

COPYRIGHT ©2015 MANICODE SECURITY

How do
we deal with
Logout correctly?

28

COPYRIGHT ©2015 MANICODE SECURITY

Logout/Session Defense
§ Give users the option to log out of the application, and make the option

available from every application page.
§ When clicked, the logout option should prevent the user from

requesting subsequent pages without re-authenticating to the
application.

§  The user's session should always be terminated during logout.
§  JavaScript can be used to force logout during a window close event.

29

COPYRIGHT ©2015 MANICODE SECURITY

How should we store
our users’ passwords

in the database?

30

COPYRIGHT ©2015 MANICODE SECURITY

Password Storage Defense Overview

31

Offline Attacks Online Attacks

§  Avoid Hashing or Encryption

§  Use proper key derivation functions
and stretching configurations

§  Use random and unique
per-user salts
–  Less effective against targeted

attacks, but use them anyhow

§  Strict Password Policy

§  Ban top X commonly used passwords

§  Ban top X commonly used passwords

§  Rate limiting

§  Multi-factor authentication

§  Behavior Analysis
–  Trojan Combat

§  Anti-Phishing
–  Early detection and takedown

§  Good Network Security

Reference: http://www.openwall.com/presentations

COPYRIGHT ©2015 MANICODE SECURITY

Estimated cost of hardware to crack password in
1 year

32

KDF 6 letters 8 letters 8 chars 10 chars 40-char text 80-char text

DES CRYPT <$1 <$1 <$1 <$1 <$1 <$1

MD5 <$1 <$1 <$1 $1.1k $1 $1.5T

MD5 CRYPT <$1 <$1 $130 $1.1M $1.4k $1.5 x 1015

PBKDF2 (100ms) <$1 <$1 $18k $160M $200k $2.2 x 1017

Bcrypt (95 ms) <$1 $4 $130k $1.2B $1.5M $48B

Scrypt (64 ms) <$1 $150 $4.8M $43B $52M $6 x 1019

PBKDF2 (5.0 s) <$1 $29 $920k $8.3B $10M $11 x 1018

Bcrypt (3.0 s) <$1 $130 $4.3M $39B $47M $1.5T

Scrypt (3.8 s) $900 $610k $19B $175T $210B $2.3 x 1023

- Research by Colin Percival, https://www.tarsnap.com/scrypt/scrypt.pdf, STRONGER
KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

COPYRIGHT ©2015 MANICODE SECURITY

Let’s Get Crackin’!

33

COPYRIGHT ©2015 MANICODE SECURITY

Wow.
Just… wow.

34

http://arstechnica.com/security/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours

COPYRIGHT ©2015 MANICODE SECURITY 35

COPYRIGHT ©2015 MANICODE SECURITY

Online Hashcracking
Services

36

md5("86e39e7942c0password123!") = f3acf5189414860a9041a5e9ec1079ab
md5("password123!") = b7e283a09511d95d6eac86e39e7942c0

COPYRIGHT ©2015 MANICODE SECURITY

Basic Password Defenses

37

Disable browser autocomplete
–  Chrome, Opera, and IE11+ will ignore the autocomplete attribute for password fields.

<form autocomplete="off">
 <input autocomplete="off">
</form>

Only send passwords over HTTPS POST Body
<form action="https://mybank.example/" method="POST">

Never display password in the browser
<input type="password">

Store passwords so that they are quickly verifiable and are not reversible
– Use a salt – Use SCRYPT/PBKDF2 – Use HMAC

COPYRIGHT ©2015 MANICODE SECURITY

Password Storage Best Practices

38

Use BCRYPT,
SCRYPT or PBKDF2

4

Use a user-specific
random and unique
salt

Do not limit the
characters or length
of user password

Do not allow users to
use common
passwords

1 2 3

Store passwords as
an HMAC + good
key management as
an alternative

5

COPYRIGHT ©2015 MANICODE SECURITY

Do Not Limit the Password Strength

§  Limiting passwords to protect against injection
is doomed to failure

§ Use proper encoding and other defenses instead
§ Very long passwords can cause DoS
§ Do not allow common passwords

39

1

COPYRIGHT ©2015 MANICODE SECURITY

Password1!

40

COPYRIGHT ©2015 MANICODE SECURITY 41

Use a User-Specific Salt

§ Protect (salt, password);
§ Use a 32+ byte salt
§ Do not depend on hiding, splitting,

or otherwise obscuring the salt
§ Consider hiding, splitting or otherwise obscuring

the salt anyway as a extra layer of defense
§ Salt should be both cryptographically random

AND unique per user!

2

COPYRIGHT ©2015 MANICODE SECURITY 42

Leverage an Adaptive KDF

§ PBKDF2 (salt, password,128000);
§ PBKDF2 when FIPS certification or enterprise

support on many platforms is required
§  bcrypt where resisting most hardware accelerated

attacks is necessary but enterprise support isn’t
§  scrypt where resisting any/all hardware accelerated

attacks is necessary but enterprise support isn’t

Imposes difficult verification on the attacker
and defender!

3

COPYRIGHT ©2015 MANICODE SECURITY

Java 7 PBKDF2

43

keyLength: length of HmacSHA1

iterationCount: 128,000 at LEAST (2014)

byte[] PBKDF2(final char[] password, final byte[] salt,
 final int iterationCount, final int keyLength) {
 try {
 return SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1”)
 .generateSecret(
 new PBEKeySpec(password, salt, iterationCount, keyLength)
).getEncoded();
 } catch (NoSuchAlgorithmException | InvalidKeySpecException e) {
 throw new RuntimeException(e);
 }
}

COPYRIGHT ©2015 MANICODE SECURITY

.NET PBKDF2

44

keyLength: length of HmacSHA1

iterationCount: 128,000 at LEAST (2014)

hashName: PBKDF2-HMAC-SHA-512

http://therealmagicmike.github.io/PBKDF2.NET/

System.Configuration.PBKDF2Section

public string HashName { get; set; }
public int IterationCount { get; set; }
public int SaltSize { get; set; }

COPYRIGHT ©2015 MANICODE SECURITY

Bcrypt in PHP
§  string password_hash

(string $password , integer $algo [, array $options])
§ Uses the bcrypt algorithm (default as of PHP 5.5.0)

bcrypt in .NET
§  https://www.nuget.org/packages/BCrypt-Official/

45

COPYRIGHT ©2015 MANICODE SECURITY

GPU Attacks on Modern Password Hashes

46

PBKDF2-HMAC-SHA-1
PBKDF2-HMAC-SHA-256
PBKDF2-HMAC-SHA-512
Bcrypt
scrypt S

TR
O

N
G

E
R

Reference: Openwall and http://www.openwall.com/presentations/

COPYRIGHT ©2015 MANICODE SECURITY

ASIC/FPGA Attacks on Modern Password Hashes

47

PBKDF2-HMAC-SHA-1
PBKDF2-HMAC-SHA-256
PBKDF2-HMAC-SHA-512
scrypt below 16 MB
bcrypt (uses 4 KB)
scrypt at 16 MB
scrypt above 32 MB S
TR

O
N

G
E

R

Reference: Openwall and http://www.openwall.com/presentations/

COPYRIGHT ©2015 MANICODE SECURITY 48

Leverage Keyed Protection Solution

§ HMAC-SHA-256([key], [salt] + [credential])
§ Protect this key as any private key using best

practices
§ Store the key outside the credential store
§  Isolate this process outside of your application layer

Imposes difficult verification on the attacker only!

4

COPYRIGHT ©2015 MANICODE SECURITY

YubiHSM: a USB Dongle for Servers

YubiHSM in a server’s internal USB port. Photo © Yubico, reproduced under the fair use doctrine.

49

COPYRIGHT ©2015 MANICODE SECURITY

HMAC’s in Action for YubiHSM

§ KEY for HMAC stored in
local key database only,
not retrievable

§ Key handle is the HSM ID
§ Data is password or KDF

of Password
§ HMAC @ Final is final

computed password hash

50

HMAC-SHA1

Key
Handle

Reset/
Final Data

Key Data
Base

HMAC @ Final

Yu
bi

H
S

M

Diagram © Yubico, reproduced under the fair use doctrine.

COPYRIGHT ©2015 MANICODE SECURITY

Forgot Password Secure Design

51

Require identity question
§  Last name, account number, email,

Social Security #, DOB
§  Enforce lockout policy or throttling

Ask one or more
good security questions

§  https://www.owasp.org/index.php/Choosing_and_
Using_Security_Questions_Cheat_Sheet

Send the user a randomly
generated token via

out-of-band communication
§  SMS, mobile app or dedicated multi-factor token

Verify code in
same web session §  Enforce lockout policy

Change password §  For more info see https://www.owasp.org/
index.php/Forgot_Password_Cheat_Sheet

COPYRIGHT ©2015 MANICODE SECURITY

Example of Forgotten Password

52

COPYRIGHT ©2015 MANICODE SECURITY

Multi-Factor Authenticaion

53

COPYRIGHT ©2015 MANICODE SECURITY 54

A slide from “Modern Two-Factor Authentication: Defending Against User-Targeted Attacks” by Dug Song and Jon Oberheide, Duo Security, 2012

COPYRIGHT ©2015 MANICODE SECURITY

2000+MFA Goes Mainstream
§ Many online services and especially banks start to treat trojans

and phishing seriously
§  They deployed 2-factor authentication where passwords are

augmented with one-time codes or some other second factor
§ Passwords remain relevant as one factor
§ But is MFA effective?

§  "The Future of Password Hashing" – Password-hashing.net

55

“"Two factor authentication isn't our savior. It won't defend against
phishing. It wont protect against identity theft. It's not going to
secure accounts from fraudulent transactions. It solves the
problems we had ten years ago, not today".” — Bruce Scneier

COPYRIGHT ©2015 MANICODE SECURITY

Multi-Factor Authentication
§  There are 3 methods of identifying an individual

Something you have – e.g. token, certificate, cell
Something you are – e.g. biometrics
Something you know – e.g. password.

§ Protects against brute force attacks,
minimizes impact of password theft

§  Financial services applications are moving towards
"stronger authentication”

§ Google/Facebook/World-Of-Warcraft support
consumer-centric multi-factor authentication

56

COPYRIGHT ©2015 MANICODE SECURITY

Multi-factor Token Generation Options

57

COPYRIGHT ©2015 MANICODE SECURITY

Multi-Factor Authentication
§ Google
§  Facebook
§ PayPal
§ Apple
§ AWS
§ Dropbox
§  Twitter
§ Blizzard's

Battle.Net
§ Valve's Steam
§ Yahoo

58

http://twofactorauth.org

COPYRIGHT ©2015 MANICODE SECURITY

Authentication
Control Flow Flaws

59

COPYRIGHT ©2015 MANICODE SECURITY

Does this code look safe to you?

60

String username = session.getAttribute("user");
if (username == null)
{
response.sendRedirect("Login Page");

}

doBusinessLogicProcessing();

COPYRIGHT ©2015 MANICODE SECURITY 61

String username = session.getAttribute("user");
if (username == null)
{
response.sendRedirect("Login Page");

}

doBusinessLogicProcessing();

What if the execution
did not stop here?

COPYRIGHT ©2015 MANICODE SECURITY

Business logic would execute for an
unauthenticated request

62

String username = session.getAttribute("user");
if (username == null)
{
response.sendRedirect("Login Page");

}

doBusinessLogicProcessing();

This is
NOT PROTECTED

COPYRIGHT ©2015 MANICODE SECURITY 63

What does this mean?
§ The execution flow does not stop

after the response.sendRedirect call
§ Entire page is processed and then the user

is redirected to error page
§ Thus, the business logic remains unprotected

COPYRIGHT ©2015 MANICODE SECURITY

Return after redirecting

64

String username = session.getAttribute("user");
if (username == null)
{
response.sendRedirect(”Access Denied");
return;

}

doBusinessLogicProcessing();
Security Measures:
Terminate the
execution flow after
redirection call.z

COPYRIGHT ©2015 MANICODE SECURITY

ASVS 2 Authentication
Requirements

65

COPYRIGHT ©2015 MANICODE SECURITY

ASVS 2 Authentication Requirements:
Easy to Discover
V2.1 Verify all pages and resources require
authentication except those specifically
intended to be public (Principle of complete
mediation).

V2.2 Verify all password fields do not echo
the user’s password when it is entered.

V2.4 Verify all authentication controls are
enforced on the server side.

V2.6 Verify all authentication controls fail
securely to ensure attackers cannot log in.

V2.16 Verify that credentials, and all other
identity information handled by the
application(s), do not traverse unencrypted
or weakly encrypted links.

V2.17 Verify that the forgotten password
function and other recovery paths do not
reveal the current password and that the new
password is not sent in clear text to the user.

V2.18 Verify that username enumeration is
not possible via login, password reset, or
forgot account functionality.

V2.19 Verify there are no default passwords
in use for the application framework or any
components used by the application (such as
"admin/password").

66

COPYRIGHT ©2015 MANICODE SECURITY

ASVS 2 Authentication Requirements:
Intermediate Part 1
V2.7 Verify password entry fields allow or
encourage the use of passphrases, and do
not prevent long passphrases or highly
complex passwords being entered, and
provide a sufficient minimum strength to
protect against the use of commonly
chosen passwords.

V2.8 Verify all account identity
authentication functions (such as
registration, update profile, forgot
username, forgot password, disabled / lost
token, help desk or IVR) that might regain
access to the account are at least as
resistant to attack as the primary
authentication mechanism.

V2.9 Verify users can safely change their
credentials using a mechanism that is at least
as resistant to attack as the primary
authentication mechanism.

V2.12 Verify that all authentication decisions
are logged. This should include requests with
missing required information, needed for
security investigations.

V2.13 Verify that account passwords are
salted using a salt that is unique to that
account (e.g., internal user ID, account
creation) and use bcrypt, scrypt or PBKDF2
before storing the password.

67

COPYRIGHT ©2015 MANICODE SECURITY

ASVS 2 Authentication Requirements:
Intermediate Part 2
V2.20 Verify that a resource
governor is in place to protect
against vertical (a single account
tested against all possible
passwords) and horizontal brute
forcing (all accounts tested with the
same password e.g. "Password1").
A correct credential entry should
incur no delay. Both these governor
mechanisms should be active
simultaneously to protect against
diagonal and distributed attacks.

V2.21 Verify that all authentication
credentials for accessing services
external to the application are
encrypted and stored in a protected
location (not in source code).

V2.22 Verify that forgot password and other
recovery paths send a link including a time-limited
activation token rather than the password itself.
Additional authentication based on soft-tokens (e.g.
SMS token, native mobile applications, etc.) can be
required as well before the link is sent over.

V2.23 Verify that forgot password functionality does
not lock or otherwise disable the account until after
the user has successfully changed their password.
This is to prevent valid users from being locked out.

V2.24 Verify that there are no shared knowledge
questions/answers (so called "secret" questions
and answers).

V2.25 Verify that the system can be configured to
disallow the use of a configurable number of
previous passwords.

68

COPYRIGHT ©2015 MANICODE SECURITY

ASVS 2 Authentication Requirements:
Advanced
V2.5 Verify all authentication controls
(including libraries that call external
authentication services) have a centralized
implementation.

V2.26 Verify re-authentication, step up or
adaptive authentication, SMS or other two
factor authentication, or transaction signing
is required before any application-specific
sensitive operations are permitted as per
the risk profile of the application.

69

COPYRIGHT ©2015 MANICODE SECURITY

ASVS 2 Session Management Requirements:
Easy to Discover
V3.1 Verify that the framework’s default
session management control
implementation is used by the application.

V3.2 Verify that sessions are invalidated
when the user logs out.

V3.3 Verify that sessions timeout after a
specified period of inactivity.

V3.5 Verify that all pages that require
authentication to access them have logout
links.

V3.6 Verify that the session id is never
disclosed other than in cookie headers;
particularly in URLs, error messages, or logs.
This includes verifying that the application
does not support URL rewriting of session
cookies.

V3.14 Verify that authenticated session
tokens using cookies sent via HTTP, are
protected by the use of "HttpOnly”.

V3.15 Verify that authenticated session
tokens using cookies are protected with the
"secure" attribute and a strict transport
security header (such as Strict-Transport-
Security: max-age=60000;
includeSubDomains) are present.

70

COPYRIGHT ©2015 MANICODE SECURITY

ASVS 2 Session Management Requirements:
Intermediate
V3.4 Verify that sessions timeout after an
administratively-configurable

V3.7 Verify that the session id is changed
on login to prevent session fixation.

V3.8 Verify that the session id is changed
upon re-authentication.

V3.10 Verify that only session ids
generated by the application framework
are recognized as valid by the application.

V3.11 Verify that authenticated session
tokens are sufficiently long and random to
withstand session guessing attacks.

V3.12 Verify that authenticated session
tokens using cookies have their path set to
an appropriately restrictive value for that site.
The domain cookie attribute restriction should
not be set unless for a business requirement,
such as single sign on.

V3.16 Verify that the application does not
permit duplicate concurrent user sessions,
originating from different machines.

71

COPYRIGHT ©2015 MANICODE SECURITY

Conclusion

72

COPYRIGHT ©2015 MANICODE SECURITY

Authentication: Summary

73

Session Management

Transport Security

Password Storage

Multi-Factor Authentication

Forgot Password Workflow

JIM MANICO Secure Coding Instructor www.manicode.com

It’s been a pleasure.

jim@manicode.com

COPYRIGHT ©2015 MANICODE SECURITY

Basic MFA Considerations

75

COPYRIGHT ©2015 MANICODE SECURITY 76

Where do you send the token?
§  Email (worst)
§  SMS (ok)
§  Mobile native app (good)
§  Mobile native app, push notification (great)
§  Dedicated token (ideal)
§  Printed Tokens (interesting)

COPYRIGHT ©2015 MANICODE SECURITY 77

How do you handle thick clients?
§  Email services, for example
§  Dedicated and strong per-app passwords

COPYRIGHT ©2015 MANICODE SECURITY 78

How do you handle unavailable MFA devices?
§  Printed back-up codes
§  Fallback mechanism (like email)
§  Call in center

COPYRIGHT ©2015 MANICODE SECURITY 79

How do you handle mobile apps?
When is MFA not useful in mobile app scenarios?

COPYRIGHT ©2015 MANICODE SECURITY

Federated Identity and SAML

80

XML-based identity management between different businesses

Centralized Authentication Authority

Single Sign-on / Log-out

Assertions and Subjects

Authentication Assertion Types

Attribute Assertion Types

Entitlement Assertion Types

COPYRIGHT ©2015 MANICODE SECURITY

SAML Transaction Steps

81

Service Provider User Partner
(Identity Provider)

Browser

1
USER TRIES TO REACH HOSTED
GOOGLE APPLICATION

2 GOOGLE
GENERATES
SAML REQUEST

3
GOOGLE REDIRECTS
BROWSER TO SSO URL

3

BROWSER
REDIRECTS
TO SSO URL

4
PARTNER PARSES
SAML REQUEST,
AUTHENTICATES USER

5 PARTNER GENERATES
SAML RESPONSE

6
PARTNER

RETURNS ENCODED
SAML RESPONS TO

BROWSER

6
BROWSER SENDS SAML
RESPONSE TO ACS URL ACS URL

7
ACS
VERIFIES
SAML
RESPONSE 8

USER IS LOGGED IN TO
GOOGLE APPLICATION

Source: https://developers.google.com/google-apps/sso/saml_workflow_vertical.gif

START

